Servernetzteil umbauen

12V 62A DC für’s Ladegerät

Auf meiner Arbeit steht ein Kontainer mit Elektroschrott. An dem darf ich mich bedienen. Neulich lag dort ein ausgemusterter Server drin. Seit einiger Zeit bin ich auf der Suche nach einem 12 Volt Netzteil um meine Akkus auch zu Hause aufladen zu können und nicht nur im Auto. Ich hatte Glück. Im Server stecken zwei Netzteile. Anders als bei den normalen Computernetzteilen sind es reine 12 Volt Netzteile und sie haben keine Kabel dran. Klein wie drei Tafeln Schokolade. Die Leistungsdaten klangen auch sehr verlockend: 62.5 Ampère. Über 60A! Krass viel. Aber die Netzteile „merken“, ob sie im Server stecken oder nicht. Und wenn sie nicht im Server sind, gehen sie auch nicht an. Im Internet fand ich dann den Hinweis, dass man eine Brücke auflöten muss, um dem Netzteil vorzugaukeln, dass es in einem Server steckt und nicht nackt auf dem Tisch liegt. Unter der Typenbezeichnung meines Netzteils fand ich im Netz nichts genaues. Dann benutzte ich die Bildersuche, und da fanden sich Bilder von anderen gehackten Netzteilen, die zwar nicht genau identisch mit meinem waren, aber scheinbar den selben Anschluss hatten.

Es wurde vorgeschlagen, einen 500 Ohm / 1 Watt Widerstand einzulöten. Ich hatte aber nur einen 2,2 KOhm / 1 Watt Wiederstand zur Hand. Der hat nicht zum gewünschten Erfolg geführt. Ich hab dann einfach einen 1/4 Watt Wiederstand mit ca. 500 Ohm genommen und siehe da: Klappt.
Was jetzt noch gelöst werden muss, ist die Frage: Wie bekomme ich da schöne Anschlüsse dran, die ich mit meinem Ladegerät verbinden kann.

Ich hab mich dann für 4mm Bananensteckerbuchsen entschieden…

Kamera-Hex, Teil 1: Idee

Projekt Kamera-Hex Teil 1

Mein neuer Plan ist es, einen Hexacopter zu bauen. Das Projekt steht noch ganz am Anfang.

Er soll am Ende vor allem als Plattform für kleinere Kameras dienen. Deshalb werde ich versuchen, einen Antrieb zu bauen, der diese Nutzlast heben kann. Außerdem soll der Hexa ein Kamera-Gimbal bekommen. Deshalb wäre es praktisch, wenn der Flight Controller bereits Funktionen dafür hat. Ein leichter Rahmen ist angesagt.

Um die Übersicht zu behalten, gliedere ich dieses Projekt in mehrere Teile:

  • Dies ist Teil 1.
  • Teil 2  beschreibt nun den Bau des eigentlichen Hexacopters, ohne aber ein Gimbal und eine Kamera zu montieren.
  • Teil 3 wird sich mit dem Pixhawk beschäftigen. Was wird wo angeschlossen? Wie wird er programmiert? Welche (Bodenstations-)Software gibt es? 433MHz-MAVLink-Funk, Flight Modes, die Fernsteuerung etc. werden eingestellt.
  • In Teil 4 soll bewiesen werden, dass der Hex tatsächlich fliegt. Der Autopilot soll besser kennengelernt werden. Es soll getestet werden, wieviel Nutzlast getragen werden kann und ob die Berechnungen con Ecalc stimmten.
  • In den folgenden Teilen soll dann beschrieben werden, wie und welches Gibal montiert wird, wie die Kamera befestigt wird etc.

Der Rahmen ist das einzige Teil, das ich bereits habe. Es ist der Hobbyking  Talon 625  aus Carbon und Alu.

Nachdem ich einen Tag damit verbracht habe, verschiedene Antriebs-Komponenten in Erwägung zu ziehen und vor allem die Kombinationen mit dem Online-Rechner für Flugmodelle  ecalc.ch  durchzurechnen, habe ich auch bereits einige Teile bestellt:

Einkaufszettel

  • Rahmen:
    Talon 625
    ca. €65,–
  • Propeller:
    Hobbyking Karbon 12×5.5
    ca. €9,– für 2 Stück
  • Motoren:
    Quanum 3110 470kv
    ca. €18,– pro Stück
  • ESCs:
    Multistar 20A opto
    ca. €6,50 pro Stück
  • FC:
    Hobbyking Pixhawk
    ca. €110,–
    oder  Banggood Pixhawk
    ca. €53,–
  • Flugakku:
    Turnigy Heavy Duty 5000mAh 6S 60C LiPo
    ca. €68,–
  • Power Distribution Board:
    Tarot Hex PDB
    ca. €2,70
  • Empfänger:
    FrSky X4R SB (von Banggood)
    oder  FrSky X4R SB (von Hobbyking)
    ca. €26,–
  • 433MHz Telemetrie MAVLink:
    Hobbyking Funkmodule
    ca. €33,–

Hintergründe für diese Auswahl

Nach den bekannten Ohm’schen Gesetzen steigt der Verlust durch Widerstand in elektrischen Leitungen mit dem Strom quadratisch an, mit der Spannung steigt er nur linear an. Deshalb gibt es vom Stromkraftwerk über Land Hochspannungsleitungen, der Strom wird erst kurz vor den Haushalten auf 230V herunter transformiert. So kann man dieselbe Leistung verschicken, ohne viel Verlust in Wärme zu stecken. (Siehe Wikipedia-Artikel über   Hochspannungsleitungen)

Deshalb habe ich entschieden, dass der Antrieb mit 6S erfolgen soll.

Außerdem benutze ich die größten Propeller, die auf diese Plattform passen, 12″, mit einer Steigung von 5.5″.

All das führt dazu, dass die ESCs zwar tauglich für 6S sein müssen, aber nur 20A aushalten müssen. Wie man sieht, orientieren sich meine Zahlen und Komponenten stark an dem 6S Upgrade Kit für Hexakopter, das es von DJI zu kaufen gibt. Damit dürfte es ziemlich effizient sein, denn dafür ist DJI unter anderem ja bekannt.

Berechnungen

Ausgehend von den Daten des Antriebssets von DJI habe ich die obigen Komponenten in den Rechner bei Ecalc eingegeben. Hohe Spannung heißt niedrige kV-Zahl für die Motoren. Die größten Propeller, die auf den 625er Rahmen passen, sind 12″ groß. Bei kräftigen Motoren darf man ruhig mal eine hohe Steigung von 5,5″ bei den Props wählen. Die Werte, die hier errechnet wurden, stimmen mich optimistisch:

  • Ein Motor beim Schweben: 2,25A, 49,6W
  • Gesamter Antrieb beim Schweben: 13,53A, 300W
  • Strom maximal: 99,8A
  • Maximale Zuladung: 5,3kg! (Das wird später das Gimbal, die Kamera und das Ladegestell!)

Das ganze Projekt:

Alle Hexacopter-Posts

Taranis mit Vibrationsalarm nachrüsten

Heute habe ich meine FrSky Taranis X9D, die noch nicht die „Plus“-Variante ist, mit einem kleinen Modul für den Vibrationsalarm nachgerüstet. Das war zwar ein bisschen fummelig, aber mit ein bisschen Geschick und dieser Anleitung kriegt Ihr das auch hin! Es gibt dazu auch ein offizielles [fancy_link link=“http://www.frsky-rc.com/download/view.php?sort=&down=149&file=Taranis%20X9D%20Vibration%20Mount%20Guide“ target=“blank“]PDF von FrSky[/fancy_link] auf Englisch, das Ihr Euch angucken könnt oder [download_link link=“http://copter.cologne/wp-content/uploads/2016/03/Taranis-X9D-Vibration-component.pdf“]hier runterladen[/download_link] könnt.

Voraussetzungen

Diese Anleitung bezieht sich nur auf die Taranis X9D (ohne Plus) Version B! Ob Eure Taranis solch eine ist, könnt Ihr auf ihrer Rückseite erkennen:

Ansonsten sind drei kleine Drähte nötig, Heißkleber, ein Lötkolben, Lötzinn und ein paar Werkzeuge wie kleine Zangen, Schraubenzieher etc.

Los geht’s!

Das sog. Haptic-Modul besteht aus einem winzigen Motor auf einer Platine. Es braucht lediglich Strom (also + und –) und einen Draht für das Signal, wann er losgehen soll.

Als erstes lötet man genau diese Drähte an das kleine Bauteil. Am besten nimmt man verschiedene Farben. Und dann muss man natürlich die Fernsteuerung aufschrauben. Vor dem Öffnen des Senders sollte man immer die Batterie entnehmen. Das Gehäuse lässt sich leicht aufklappen und zwei der vielen Schalter fallen einem entgegen.

Die beiden Schalter, die immer rausfallen, habe ich mit Doppelklebeband festgemacht, damit sie nicht so nerven. Und schon sieht man recht gut, wo unser kleines Vibrations-Modul eingebaut werden soll:

Rechts neben der Platine des 2,4GHz-Senders sind zwei Schrauben, und genau dahin kommt unser Haptik-Modul. Dafür muss man diese Schrauben entfernen, ein bisschen Heißkleber auf die Platine geben und schnell das kleine Modul mit den Schrauben dort befestigen. Aufpassen, dass man nicht die dünnen Kabel des Motors selbst festschraubt!

Als nächstes werden die Kabel festgelötet. Die drei Stellen, an denen die Litzen später sein sollen, sind etwas haarig!

Um das Kabel für das Signal festzulegen, muss man eine der vielen Leiter aus dem Stecker ziehen. Das fällt leichter, wenn man ihn dafür kurz rauszieht. Und dann vorsichtig alles verlöten! VCC + kommt an die rechte Seite des winzigen Widerstands R10, GND– kommt an die rechte Seite von D5. Für das Signal-Kabel nicht vergessen, vorher ein winziges Stück Schrumpfschlaue über den Draht zu ziehen!

Das fertige Werk sollte dann ungefähr so aussehen:

Nun kann man die Taranis vorsichtig wieder zusammensetzen und zuschrauben.

Software einstellen

Damit der Vibrationsalarm auf wirklich funktioniert, muss man jetzt nur noch eine bestimmte Variante der Firmware auf der Taranis installieren, damit [fancy_link link=“http://www.open-tx.org/downloads“ target=“blank“]OpenTX[/fancy_link] auch weiß, dass man das Modul eingebaut hat. Das ist aber mit Hilfe der OpenTX-Software [fancy_link link=“http://www.open-tx.org/downloads“ target=“blank“]companion[/fancy_link] ganz einfach! In dem Programm müsst Ihr im Menü Einstellungen (das Zahnrad-Symbol) das kleine Häkchen setzen bei „haptic“, dann OK klicken und dann die Firmware neu aufspielen.

Das geht, indem Ihr an der Taranis den linken und rechten waagerechten Trimmschalter jeweils in Richtung An-/Ausschalter drückt und dann mit gedrückten Schaltern die Taranis einschaltet. So bootet sie in das Service-Menü. Jetzt könnt Ihr einfach einen USB-Stecker in Euren Rechner Stecken und auf der Rückseite mit dem USB-Port der Taranis verbinden. Sobald sich zwei Massenspeicher am Rechner zeigen, könnt Ihr companion verwenden, um die neue Firmware auf den Sender zu flashen. Dann werft Ihr die beiden Massenspeicher sicher aus, zieht das USB-Kabel ab und drückt auf der Taranis im Menü „Exit“. So startet sie und Ihr könnt Eure Haptik mittels einem langen Druck auf die Menu-Taste konfigurieren.

 

Bastel-Treffen

Am 13.2.2016 trafen sich Einige vom Copter-Cologne-Stasmmtisch zu einem Bastel-Nachmittag. Jeder hatte verschiedene Sachen und Projekte dabei, die er reparieren, löten, bauen, kleben wollte. So fanden sich viele Modelle, Werkzeuge und Einzelteile auf Tischen und auf dem Boden. Außer produktiv zu sein, haben wir natürlich auch viel gequatscht.

250er Racing Quad selberbauen

Eine Bauanleitung

Weil das Internet voll davon ist und es nach mächtig viel Spaß aussieht, habe ich beschlossen, mir meinen eigenen kleinen Flitzer selbst zu bauen. Allerdings wollte ich für den kleinen 250er racing Quad mit FPV nicht allzuviel Geld ausgeben. Als treuer Zuschauer bot es sich also an, das Projekt von Bruce Simpson alias  RCModelReviews nachzubauen. In  fünf Videos  zeigt er, wie man ohne viel Geld auszugeben einen tollen kleinen Renn-Quad baut.

Ich zeige Euch hier, wie ich meine Variante baue. Fangen wir mit der Einkaufsliste an:

Zutaten

  1. ZMR250 Rahmen von Banggood (Link)
    Ich habe mich für die extrem günstige Variante aus Fiberglas entschieden – nur €15,–!
  2. D4R-II Empfänger (Banggood  Link) ca. €28,–
  3. Naze32 (Hobbyking   Link)
  4. Motoren DYS BE1806 2300KV von Banggood (Link)
    Zur Sicherheit habe ich fünf Stück bestellt zu je ca. €9,–.
  5. Propeller Gemfan 5×3 von Banggood (Link)
    oder Gemfan 6×3 für mehr Power (Link)
    Auch hier ist es besser, mehrere Packungen á vier Stück zu je ca. €2,– zu ordern.
  6. ESCs Afro (Hobbyking  Link)
    Besser fünf Stück bestellen!
  7. LEDs: Ring (Banggood  Link) und Streifen (Link)
  8. FrSky Taranis (Banggood Link)
  9. Flugakku(s) 1300mAh 3S 45–90C LiPo (Hobbyking  Link)
  10. FPV-Kamera (Surveilzone  Link)

Der Preis

Zählt man alles zusammen, ergeben sich folgende ungefähre Preise:

  • Alle Bauteile wie oben, ohne Fernsteuerung, Empfänger und Akkus: €181,–
  • Alles inkl. Taranis, D4R-II und drei Akkus: €496,–
  • Zu guter Letzt fehlt noch eine Videobrille oder Monitor für €60,– bis €400,– und ein Ladegerät für vielleicht €40,–.

D4R-II flashen

Zu allererst habe ich den Empfänger mit einer neuen Firmware geflasht, die es gestattet, mehr als sechs Kanäle per CPPM auszugeben. Im CPPM Modus reicht ein einziges Servokabel aus, um den Empfänger mit dem Naze-Board zu verbinden. Leider ist im Auslieferungszustand des D4R-II die Länge eines Frames mit 17ms ein bisschen zu kurz, um auf diese Weise alle acht Kanäle zu benutzen. (Video dazu) Also Bietet FrSky eine Firmware an, die die Frame-Länge aus 27ms erhöht und damit das Problem löst. Eine ausführliche Anleitung dazu gibt es in vielen YouTube-Videos und auch von FrSky selbst als PDF-Dokument:  How To Upgrade D4R-II.

Warum sollte man für einen MiniQuad mehr als fünf Kanäle benutzen? Muss man sich überhaupt die Mühe machen, das Naze-Board zu flashen? Ich finde schon, denn wenn man bis zu acht Kanäle zur Verfügung hat, kann man an seiner Fernsteuerung viele tolle Funktionen des Naze sehr einfach und übersichtlich direkt auf Schalter legen. Z.B. kann man die Flugzustände (flight modes) umschalten, die LEDs ein- und ausschalten, das Barometer und/oder den Kompass an- und abschalten, den Piepser zum Suchen anschalten  etc. Gepaart mit der Sprachausgabe der Taranis ergibt das schon viel Spaß!

Doch dazu später mehr! Eine vollständige  Anleitung zum Programmieren der Taranis findet Ihr übrigens auch bei uns.

Motoren anbringen

Als nächstes habe ich auf jeden Motor den kleinen Prop-Adapter geschraubt (mit blauem Schraubensicherungslack natürlich!) und die Motoren auf den Armen des ZMR250 befestigt (ebenfalls mit „LocTite“). Hier ein paar Fotos dazu:

Die ESCs

Um Platz und Gewicht zu sparen und um alles schick zu machen habe ich die Kabel der Motoren direkt auf die ESCs gelötet, die ich vorher aus dem Schrumpfschlauch ausgepackt habe. Dann habe ich sie mit doppelseitigem Schaumstoff-Klebeband auf die Arme geklebt und zum Schluss den ganzen Arm neu eingeschrumpft.

Rahmen und Power Distribution

Um die Stromkabel der ESCs und überhaupt die ganze Stromversorgung in Angriff nehmen zu können, baut man jetzt am besten die Grundplatte des ZMR250-Rahmens mit den roten Alu-Stangen auf, und zwar mit den längeren Schrauben, die bei dem Kit dabei sind. Wer will, kann auch schon das Naze-Board montieren. Ich habe die vier Arme ebenfalls schonmal provisorisch angebracht, damit ich alle Kabellängen richtig abschneiden kann. Welcher Arm wo angebracht wird, habe ich auf den Fotos unten beschriftet.

Die einfachste Methode, alle ESCs, das Video-Equipment und den Spannungssensor mit Batteriestrom aus dem Flugakku zu versorgen, ist es, ein Stück doppelseitige Platine zu nehmen, einen dünnen Streifen des Kupfers herauszutrennen und alle Kabel direkt da drauf zu löten. Dafür empfiehlt es sich, eine dicke Lötspitze zu nehmen. Anschließend kann man mit einem Stückchen Plastik eine Isolierung herstellen:

Für den Anschluss an den Akku habe ich etwas dickere Kabel verwendet. Außerdem habe ich zwei kleine JST-Stecker zusätzlich auf das selbstgebastelte „Power Distribution Board“ gelötet, um die Videokamera zu versorgen und den Sensor-Eingang des Naze-Boards. Dann kann man auch schon die untere Rahmenplatte montieren! Dabei sollte man drauf achten, dass keine Kabel zwischen den Armen und dem Rahmen eingequetscht werden. Es ist ein bisschen fummelig, alle diese Schrauben und Arme festzuhalten, ohne dass sie auseinanderfallen, aber es geht!

Zum Schluss habe ich den XT60-Stecker an die Anschlusskabel gelötet. Dafür habe ich sie auf ca. 7cm abgeschnitten. Nicht vergessen, vorher den Schrumpfschlauch auf die Kabel zu stecken! Zum Schluss habe ich nochmals auf Kurzschlüsse getestet und dann die ESCs mit einem Servotester angetestet.

Das Naze-Board

Hier zeige ich nochmal, was an welchen Pin angeschlossen wird. An mein Naze-Board habe ich alle Pins drangelötet. Dadurch braucht es mehr Platz. Aber die Verbindungen sind leichter zu trennen, falls man sich vertut.

Buzzer

Der Buzzer ist sehr nützlich, um den Quad zu finden, falls man nicht genau weiß, wo er abgestürzt ist. Dann kann man ihn per Fernsteuerung aktivieren. So wird er angeschlossen:

Empfänger

Um den Empfänger an das Board anzuschließen reicht ein einziges female-to-female Servokabel aus. Beim D4R-II müssen die Pins von Kanal 3 und 4 mit dem kleinen Jumper kurzgeschlossen werden, um ihn in den CCPM-Modus zu versetzen. Das Servokabel kommt dann an den Kanal 1:

Telemetrie

Um sich per Telemetrie einige wichtige Daten wie z.B. die Batteriespannung auf der Fernsteuerung anzeigen lassen zu können, muss man den Telemetrie-Port des D4R-II Empfängers mit dem richtigen Pin des Naze-Board verbinden. Man braucht tatsächlich nur das grüne Kabel des von FrSky mitgelieferten Steckers zu benutzen, denn der -Pol ist bereits durch das Servokabel verbunden. Die drei restlichen Litzen kann man eigentlich abschneiden:

LEDs

Wenn man die WS2811 oder WS2812 LEDs am Naze-Board benutzen will, muss man den „Data In“-Anschluss des ersten LED-Elements mit dem RC-Pin 5 auf dem Naze-Board verbinden.

Die Spannung zum Betrieb der LEDs kann man aus einem der Servostecker der ESCs entnehmen, da nur ein ESC nötig ist, um das Naze-Board und den Empfänger zu betreiben. Wichtig ist, dass diese LEDs das Steuersignal nur als solches erkennen, wenn seine Spannung fast die gleiche ist wie die, mit denen man die LEDs betreibt (die am Vin-Anschluss der LEDs). Deshalb ist es manchmal nötig, zwischen den Pluspol des ESCs und den Vin-Anschluss der LEDs eine Diode einzusetzen, um so die Spannung ein bisschen zu reduzieren. Wer trotzdem Probleme mit flackernden LEDs hat, sollte auf einen eigenen kleinen BEC zurückgreifen, um die LEDs mit Spannung zu versorgen. Link zur   Original-Dokumentation .

Batteriespannung

Zum Messen der Spannung des Flugakkus werden zwei Kabel an diese Pins auf dem Naze-Board angeschlossen. Dabei unbedingt + und beachten, da sonst das Board frittiert wird. Dieser Eingang kann auf dem Naze32 Board bis zu 25V oder 6S Akkus aushalten. Andere Boards können z.B. nur bis zu 3,3V vertragen – hier muss man dann einen Spannungsteiler einbauen.

Empfänger und Naze einbauen

Den Empfänger habe ich mit etwas Klettband unter dem Naze-Board befestigt. Für die Telemetrie habe ich ein extra kurzes Kabel gelötet. Beim Anschließen der vier Stecker von den ESCs an das Naze-Board muss man auf die richtige Reihenfolge achten! Bei ESC 2 und 3 habe ich das rote Kabel aus den Servosteckern herausgezogen, den Kontakt zurückgebogen und mit Schrumpfschlauch am Kabel festgemacht, damit das Naze Board nur vom ersten ESC mit 5V versorgt wird. Auch beim 4. ESC habe ich das rote Kabel aus dem Servostecker herausgezogen, damit ich es als Spannungsquelle für die LEDs benutzen kann (s.u. „LEDs einbauen“).

FPV-Kamera und -Sender

Einbauen

Die kleine FPV Bordkamera wird mit den M2 Nylon Abstandhaltern an der kleinen Schwarzen Frontplatte des ZMR250-Rahmens befestigt. Dabei habe ich sicherheitshalber einen kleinen Tropfen Heißkleber auf den Quarz gegeben, damit er sich nicht losrüttelt. Außerdem muss der nutzlose Rand aus unbenutzter Platine rund um die Kamera abgetrennt werden. Die überstehenden Gewinde der Nylon Spacer habe ich abgeschnitten, weil die Kameraplatte sonst an den roten Alu-Pfosten des Rahmens anstößt.

Nachdem ich die nötigen Öffnungen in das Plastik um den Videosender herum ausgeschnitten hatte, konnte ich die Verkabelung der FPV-Sachen herstellen. Auch hier habe ich einen kleinen JST-Stecker verlötet, der zu dem an der Power-Verteiler-Platine passt. Ich habe alles so befestigt, dass es unter der oberen Rahmenplatte des ZMR 250 befestigt ist.

Einstellen

Vor dem endgültigen Einbau der oberen Rahmenplatte mit den FPV-Sachen habe ich an die Kamera das kleine zusätzliche Board angeschlossen, mit dessen Hilfe man in das Menü der Kamera kommt. Dort empfiehlt es sich, einige Einstellungen an der Bildqualität des Videos vorzunehmen, um günstige Bedingungen zum FPV-Fliegen zu haben. (Lässt man den Objektivdeckel auf der Kamera, kann man die Menüs besser lesen.) Meine Einstellungen sind auf den Fotos unten zu sehen:

LEDs enbauen

Die bunten LEDs einzubauen war etwas fummelig, weil jetzt schon beinahe der gesamte Platz von irgendwelchen Kabeln verbraucht war. Doch ich habe noch mehr reinbekommen:

Fertig gebaut!

So, der kleine Quad ist fertig! Er wiegt mit 1300mAh-Akku 509g und ohne Akku 394g. Jetzt geht’s daran, ihn zu programmieren.

CleanFlight

Zum Programmieren des Naze32 benutze ich CleanFlight. Ich finde es übersichtlicher und irgendwie moderner als BaseFlight. Man kann es umsonst für Windows und Mac OS X auf der Seite cleanflight.com  herunterladen, und zwar als App für Googles Chrome-Browser. Toll! Eine vollständige  Anleitung zum Programmieren der Taranis findet Ihr übrigens auch bei uns.

Wenn man das Naze Board per USB mit dem Rechner verbunden hat, klickt man oben in der Menüleiste auf Connect, um die Software zu verbinden. Bevor man dies tut, sollte man aber ein Update der Firmware auf dem Board durchführen. Dazu muss man zwar das USB-Kabel verbinden, aber nicht auf den Connect-Knopf in der Software klicken. Denn nur im Startbildschirm finden sich der Reiter „Firmware Flasher“. Dort muss man aus der Liste unbedingt das richtige Board auswählen!

Nun kann man sich verbinden und alle Einstellungen nach seinen Wünschen vornehmen. Ich zeige hier für jeden der Reiter, wie ich mein Naze Board konfiguriert habe und erkläre kurz, warum.

Im Reiter „Ports“

muss man FrSky-Telemetrie aktivieren, wenn man sie benutzen möchte:

Im Reiter „Configuration“

werden dann viele grundlegende Einstellungen gemacht. Receiver Mode: RX_PPM bedeutet, dass man den Empfänger mit nur einem Kabel per CPPM mit dem Naze verbindet. Battery Voltage: VBAT bedeutet, dass man zwei Pins auf dem Naze dazu benutzt, die Batteriespannung des Flug-Akkus zu überwachen. Other Features: TELEMETRY bedeutet, dass das Naze-Board Telemetriedaten an einem bestimmten Pin ausgibt. Verbindet man diesen mit dem FrSky D4R-II, so erhält man viele Werte auf dem Display der Taranis (z.B. die Spannung des Flugakkus, s.o.!). LED_STRIP bedeutet, dass man den RC-Pin 5 dazu benutzt, die bunten LEDs anzusteuern.

Die PIDs

An den PIDs, die ja so wichtig für das Flugverhalten und das Ansprechen des Quads auf Steuerbefehle sind, habe ich nicht allzuviel an den Einstellungen geändert, die das Naze Board schon vorgab. Allerdings habe ich den Algorithmus auf die Variante „1 MultiWii (Rewrite)“ umgestellt und die Yaw-Rate auf 0,73 erhöht. Zu dem Thema PIDs in Cleanflight gibt es tausende Youtube-Videos und Ratgeber. Am Ende muss jeder selbst probieren, bis er das Ideal gefunden hat. Hier sind meine Einstellungen zum Anfangen:

Der Reiter „Receiver“

stellt Werkzeuge zur Verfügung, mit denen man sein Naze-Board und seinen Empfänger optimal aufeinander einstellt. Hier ist es wichtig, dass in der Neutralstellung der Knüppel die Werte 1500 betragen und an den Enden genau 1000 bzw. 2000 erreichen.

Im Reiter „Modes“

wird festgelegt, welche Flugzustände wie aktiviert werden. Ist keiner der Modes aus der List aktiviert, dann ist automatisch der „Acro“-Mode aktiv, sobald man das Board mittels der Steuerknüppel scharfgeschaltet hat. Möchte man lieber mit einem Schalter an der Funke das Board armen, stellt man hier einen Bereich dafür beim ersten gelisteten Mode „Arm“ ein.

Im Reiter „LED Strip“

werden die LEDs  programmiert. Hierzu gibt es eine tolle   Anleitung  und viele gute  YouTube-Video s. Grob gesagt ist es so, dass man im „Wire Ordering Mode“ alle LEDs in der Reihenfolge in das Schachbrett einträgt, in der man sie verkabelt hat. Dabei stellt das Schachbrett ungefähr dar, wo am Quad sich die jeweiligen LEDs befinden. Nach dem Verlassen des Wire Ordering Modes legt man für jede eingetragene LED fest, in welche Richtung sie zeigt (Nord, Ost, Süd, West, oben, unten oder eine beliebige Kombination). Und dann weist man jeder LED eine Funktion oder Farbe zu. So sieht es bei mir aus:

Fernsteuerung programmieren

vollständige  Anleitung zum Programmieren der Taranis

Er fliegt!

Bilder