H8 mini mit FPV

Das wichtigste zuerst: Nicht nachmachen! Nicht, weil es gefährlich wäre, nee: es funktioniert nicht gut. Aber jetzt mal der Reihe nach. Alles hat angefangen mit dem H8 mini. Den gibt es von JJRC und von Eachine. Der fliegt einfach super, und anders als meine JJRC H20s gehen die H8 Minis einfach nicht kaputt. Schnelles und agiles Fliegen ist kein Problem. Vielleicht nix für Anfänger, aber für den geringen Preis kann eigentlich niemand etwas falsch machen. Den ersten habe ich für 13€ gekauft. Zwischenzeitlich war der Preis auch mal bei gut 11€.

In der nächsten Zeit werde ich noch Berichte darüber schreiben, wie ich eine andere Firmware auf einen H8 mini gemacht habe und wie man die Fünf- oder Sechsfach-Ladegeräte so umlöten kann, dass die Akkus auch mehr als 20 Ladungen überleben.

Nach vielen Flugstunden mit diesem genialen Copter kam dann die Idee auf, ob es nicht möglich wäre, ne Kamera und n Videosender mitfliegen zu lassen. Der H8 mini kann mit Ach und Krach 8 Gramm tragen. Nicht viel. Gekauft habe ich das:

  • Copter:
    [fancy_link link=“http://www.banggood.com/Eachine-H8-Mini-Headless-Mode-2_4G-4CH-6-Axis-RC-Quadcopter-RTF-p-975808.html“ target=“blank“]Eachine H8 mini[/fancy_link]
  • Kamera (egal, was irgend wo steht: Achtung: 5 Volt, NICHT MEHR):
    [fancy_link link=“http://www.banggood.com/600TVL-8_0MP-14-2_8mm-CMOS-FPV-170-Degree-Wide-Anlge-Lens-Camera-PALNTSC-p-984345.html“ target=“blank“]CMOS Minikamera[/fancy_link]
  • Videosender:
    [fancy_link link=“http://www.banggood.com/FPV-5_8G-10mW-Wireless-Audio-Video-Transmitter-Module-TX5813-p-84761.html“ target=“blank“]10 mWatt 5,8 GHz[/fancy_link]
  • Spannungsversorgung:
    [fancy_link link=“http://www.exp-tech.de/shields-module/strom-spannung/pololu-einstellbarer-step-up-step-down-spannungsregler-s7v8a“ target=“blank“]Pololu Spannungsregler[/fancy_link]
  • und dazu noch:
    [fancy_link link=“http://www.reichelt.de/index.html?ACTION=3;ARTICLE=9613;SEARCH=KUPFER%200,1MM“ target=“blank“]Lackdraht 0,1 mm Dicke[/fancy_link]

Preis zusammen: etwas über 35€.

Über den Zusammenbau gibt’s nicht viel zu erzählen. Nur ein paar Anmerkungen:

Lackdraht:

Das einzige, was man erwähnen sollte ist, wie man mit diesem Lackdraht umgeht. Dieser Draht ist mit einer isolierenden Lackschicht ummantelt. Diese muss natürlich weg, wenn man den Draht anlöten will. Am Anfang habe ich mit ca. 350 Grad gelötet, was oft dazu geführt hat, dass der Lack nicht verbrannt ist und der Draht nicht gehalten hat. Später bin ich dazu übergegangen, die Drahtenden mit 450 Grad zu verzinnen und dann, nachdem der Lack verbrannt ist, mit 350 Grad an die Platine zu löten. Das klappt gut. Wer sich Gedanken über den geringen Querschnitt macht: Die Bedenken hatte ich auch. Darum habe ich mal ausgerechnet wie hoch die Verlustleistung werden wird und wie hoch der Spannungsabfall. 11,3 mVolt und 1 mWatt. Also fast nix. Daten: Spannung 4,5 Volt, Strom 100 mA, Leitungslänge 10 cm.

Spannungsversorgung:

Andere Leute haben schon das selbe versucht. Unter anderem habe ich dieses Video gesehen:
[fancy_link link=“https://www.youtube.com/watch?v=DREHnDY1WVk“ target=“blank“]Video von RC FPV Flight[/fancy_link] Sehr zu empfehlen! Dort kann man erfahren, dass die Spannung des H8 Minis im Flug so stark zusammenbricht, dass die Videoübertragung gestört wird. Um dem entgegenzuwirken braucht man eine Spannungsregelung für Kamera und Videosender. Das Pololu-Modul macht genau das in faszinierender Qualität und ist dabei noch sehr klein und leicht.

Antenne:

Als Antenne habe ich auch den Lackdraht verwendet. Die Länge entspricht Lambda/4, also ca. 13 mm. Ich komme damit auf eine Reichweite von deutlich über 100 Meter, was mir dicke reichen würde.

Bilder:

Ergebnis:

Ja, er fliegt. Aber mehr schlecht als recht. Man ist die ganze Zeit damit beschäftigt, das Ding irgendwie in der Luft zu halten. Schweben ist nur mit 90% Schub möglich. Es macht einfach überhaupt keinen Spaß. Ich habe mich dazu entschieden, den Sender und die Kamera auf einen größeren Copter zu bauen. Die Wahl fiel auf den Syma X5C-1. Dazu ein anderes mal mehr.

Kamera-Hex, Teil 1: Idee

Projekt Kamera-Hex Teil 1

Mein neuer Plan ist es, einen Hexacopter zu bauen. Das Projekt steht noch ganz am Anfang.

Er soll am Ende vor allem als Plattform für kleinere Kameras dienen. Deshalb werde ich versuchen, einen Antrieb zu bauen, der diese Nutzlast heben kann. Außerdem soll der Hexa ein Kamera-Gimbal bekommen. Deshalb wäre es praktisch, wenn der Flight Controller bereits Funktionen dafür hat. Ein leichter Rahmen ist angesagt.

Um die Übersicht zu behalten, gliedere ich dieses Projekt in mehrere Teile:

  • Dies ist Teil 1.
  • Teil 2  beschreibt nun den Bau des eigentlichen Hexacopters, ohne aber ein Gimbal und eine Kamera zu montieren.
  • Teil 3 wird sich mit dem Pixhawk beschäftigen. Was wird wo angeschlossen? Wie wird er programmiert? Welche (Bodenstations-)Software gibt es? 433MHz-MAVLink-Funk, Flight Modes, die Fernsteuerung etc. werden eingestellt.
  • In Teil 4 soll bewiesen werden, dass der Hex tatsächlich fliegt. Der Autopilot soll besser kennengelernt werden. Es soll getestet werden, wieviel Nutzlast getragen werden kann und ob die Berechnungen con Ecalc stimmten.
  • In den folgenden Teilen soll dann beschrieben werden, wie und welches Gibal montiert wird, wie die Kamera befestigt wird etc.

Der Rahmen ist das einzige Teil, das ich bereits habe. Es ist der Hobbyking  Talon 625  aus Carbon und Alu.

Nachdem ich einen Tag damit verbracht habe, verschiedene Antriebs-Komponenten in Erwägung zu ziehen und vor allem die Kombinationen mit dem Online-Rechner für Flugmodelle  ecalc.ch  durchzurechnen, habe ich auch bereits einige Teile bestellt:

Einkaufszettel

  • Rahmen:
    Talon 625
    ca. €65,–
  • Propeller:
    Hobbyking Karbon 12×5.5
    ca. €9,– für 2 Stück
  • Motoren:
    Quanum 3110 470kv
    ca. €18,– pro Stück
  • ESCs:
    Multistar 20A opto
    ca. €6,50 pro Stück
  • FC:
    Hobbyking Pixhawk
    ca. €110,–
    oder  Banggood Pixhawk
    ca. €53,–
  • Flugakku:
    Turnigy Heavy Duty 5000mAh 6S 60C LiPo
    ca. €68,–
  • Power Distribution Board:
    Tarot Hex PDB
    ca. €2,70
  • Empfänger:
    FrSky X4R SB (von Banggood)
    oder  FrSky X4R SB (von Hobbyking)
    ca. €26,–
  • 433MHz Telemetrie MAVLink:
    Hobbyking Funkmodule
    ca. €33,–

Hintergründe für diese Auswahl

Nach den bekannten Ohm’schen Gesetzen steigt der Verlust durch Widerstand in elektrischen Leitungen mit dem Strom quadratisch an, mit der Spannung steigt er nur linear an. Deshalb gibt es vom Stromkraftwerk über Land Hochspannungsleitungen, der Strom wird erst kurz vor den Haushalten auf 230V herunter transformiert. So kann man dieselbe Leistung verschicken, ohne viel Verlust in Wärme zu stecken. (Siehe Wikipedia-Artikel über   Hochspannungsleitungen)

Deshalb habe ich entschieden, dass der Antrieb mit 6S erfolgen soll.

Außerdem benutze ich die größten Propeller, die auf diese Plattform passen, 12″, mit einer Steigung von 5.5″.

All das führt dazu, dass die ESCs zwar tauglich für 6S sein müssen, aber nur 20A aushalten müssen. Wie man sieht, orientieren sich meine Zahlen und Komponenten stark an dem 6S Upgrade Kit für Hexakopter, das es von DJI zu kaufen gibt. Damit dürfte es ziemlich effizient sein, denn dafür ist DJI unter anderem ja bekannt.

Berechnungen

Ausgehend von den Daten des Antriebssets von DJI habe ich die obigen Komponenten in den Rechner bei Ecalc eingegeben. Hohe Spannung heißt niedrige kV-Zahl für die Motoren. Die größten Propeller, die auf den 625er Rahmen passen, sind 12″ groß. Bei kräftigen Motoren darf man ruhig mal eine hohe Steigung von 5,5″ bei den Props wählen. Die Werte, die hier errechnet wurden, stimmen mich optimistisch:

  • Ein Motor beim Schweben: 2,25A, 49,6W
  • Gesamter Antrieb beim Schweben: 13,53A, 300W
  • Strom maximal: 99,8A
  • Maximale Zuladung: 5,3kg! (Das wird später das Gimbal, die Kamera und das Ladegestell!)

Das ganze Projekt:

Alle Hexacopter-Posts

FPV Nano QX

Mein neustes liebstes Spielzeug momentan ist der FPV Nano QX von Blade. Kürzlich habe ich die BNF-Variante gekauft und benutze sie zusammen mit den Fatshark Dominator HD v2 Goggles und meiner Taranis. Absolute Empfehlung zum Erlernen des FPV-Fliegens. Man kann in Ruhe zu Hause üben, ist unabhängig von Wind und Wetter und kann auf einen zweiten Mann, den Spotter, verzichten.

Natürlich benutze ich zum Fliegen mein selbstgebautes DSMX-Modul ([fancy_link link=“http://copter.cologne/dsmx-modul-fuer-taranis-basteln/“]Bauanleitung[/fancy_link]) in der FrSky Taranis, welches ja bekanntermaßen [fancy_link link=“http://copter.cologne/dsmx-latenz-test/“]sehr gute Dienste[/fancy_link] leistet.